Join Operations:

A Join operation combines related tuples from different relations, if and only if a given join condition is satisfied. It is denoted by \bowtie .

Example:

EMPLOYEE

EMP_CODE	EMP_NAME
101	Stephan
102	Jack
103	Harry

SALARY

EMP_CODE	SALARY
101	50000
102	30000
103	25000

Operation: (EMPLOYEE ⋈ SALARY)

Result:

EMP_CODE	EMP_NAME	SALARY

101	Stephan	50000
102	Jack	30000
103	Harry	25000

Types of Join operations:

1. Natural Join:

- A natural join is the set of tuples of all combinations in R and S that are equal on their common attribute names.
- o It is denoted by \bowtie .

Example: Let's use the above EMPLOYEE table and SALARY table:

Input:

□EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY)

Output:

EMP_NAME	SALARY
Stephan	50000
Jack	30000
Harry	25000

2. Outer Join:

The outer join operation is an extension of the join operation. It is used to deal with missing information.

Example:

EMPLOYEE

EMP_NAME	STREET	СІТҮ
Ram	Civil line	Mumbai
Shyam	Park street	Kolkata
Ravi	M.G. Street	Delhi
Hari	Nehru nagar	Hyderabad

FACT_WORKERS

EMP_NAME	BRANCH	SALARY
Ram	Infosys	10000
Shyam	Wipro	20000
Kuber	HCL	30000
Hari	TCS	50000

Input:

(EMPLOYEE ⋈ FACT_WORKERS)

Output:

emp_na Me	STREE T	CITY	BRANC H	SALAR Y
Ram	Civil line	Mumbai	Infos ys	100 00
Shyam	Park stre et	Kolkata	Wipr o	200 00
Hari	Neh ru nag	Hyderab ad	TCS	500 00

ar		

An outer join is basically of three types:

- a. Left outer join
- b. Right outer join
- c. Full outer join

a. Left outer join:

- Left outer join contains the set of tuples of all combinations in R and S that are equal on their common attribute names.
- o In the left outer join, tuples in R have no matching tuples in S.
- o It is denoted by \bowtie .

Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input:

1. ____ EMPLOYEE ⋈ FACT_WORKERS

emp_na Me	STREE T	CITY	BRANC H	SALAR Y
Ram	Civil line	Mumbai	Infos ys	100 00
Shyam	Park stre et	Kolkata	Wipr o	200 00
Hari	Neh ru	Hyderab	TCS	500

	stre et	ad		00
Ravi	M.G. Stre et	Delhi	NULL	NUL L

b. Right outer join:

- Right outer join contains the set of tuples of all combinations in R and S that are equal on their common attribute names.
- o In right outer join, tuples in S have no matching tuples in R.
- o It is denoted by \bowtie .

Example: Using the above EMPLOYEE table and FACT_WORKERS Relation

Input:

EMPLOYEE ⋈ FACT_WORKERS

Output:

emp_na Me	BRANC H	SALAR Y	STREE T	CITY
Ram	Infos ys	100 00	Civil line	Mumbai
Shyam	Wipr o	200 00	Park stre et	Kolkata
Hari	TCS	500	Neh	Hyderab

		00	ru stre et	ad
Kuber	HCL	300 00	NUL L	NULL

c. Full outer join:

- Full outer join is like a left or right join except that it contains all rows from both tables.
- o In full outer join, tuples in R that have no matching tuples in S and tuples in S that have no matching tuples in R in their common attribute name.
- o It is denoted by \bowtie .

Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input:

EMPLOYEE 🔀 FACT_WORKERS

Output:

emp_na Me	STREE T	CITY	BRANC H	SALAR Y
Ram	Civil line	Mumbai	Infos ys	100 00
Shyam	Park stre et	Kolkata	Wipr o	200 00

Hari	Neh ru stre et	Hyderab ad	TCS	500 00
Ravi	M.G. Stre et	Delhi	NULL	NUL L
Kuber	NUL L	NULL	HCL	300 00

3. Equi join:

It is also known as an inner join. It is the most common join. It is based on matched data as per the equality condition. The equi join uses the comparison operator(=).

Example:

CUSTOMER RELATION

CLASS_ID	NAME
1	John
2	Harry
3	Jackson

PRODUCT

PRODUCT_ID	CITY
1	Delhi
2	Mumbai
3	Noida

Input:

CUSTOMER 🖂 PRODUCT

Output:

CLASS_ID	NAME	PRODUCT_ID	CITY
1	John	1	Delhi
2	Harry	2	Mumbai
3	Harry	3	Noida